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1.Introduction 
The main purpose of the  present work is solving the characterization problem which  
consist of identification of necessary and sufficient conditions on the scattering data 
ensuring that the reconstructed potential belongs to a particular class. In our case the 
potential belongs to 2

+Q  consisting of functions 
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which is subclass of the class 2Q of all π2  periodic complex –valied funtions is 
considered on the real axis R , belonding to ]2,0[2 πL   
The object under consideration is the operator L , given by the differential expression  
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in the ),(2 ∞−∞L ,with potentials +∈ 2)( Qxpγ . 
Note, that some characterizations for the Sturm-Luivvil operator in the class of real-
valied potentials belonding to )(1

1 RL ( )(1 RLα is the class of measurable potentials 
satisfinding the condition ∞<+∫ )()1( xpxdx

R
γ

α ), has been given by Melin [9]  and 

Marchenko [8].For more detals reference may be found in [5,7,10]. 
The inverse problem for the potentials form of (1.1) firstly was formulated and solved 
in [1],where is shown,that the equation yyl m2)( λ= , has the solution 
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and Wronscian of the system of solutions,being equal to Ai mm )12()( −λ , where  
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 is not zero at 0≠λ . 
The limit 
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also is a solution of the equation yyl m2)( λ= , but is lineary dependent with ),( jnjx ωλϕ . 

Thus, the numbers 12,1,,~
−=∈ mjNnSnj , there exist,for which 

              ),(~)( jnjnjnj xSx ωλϕϕ = ,                                      (1.4) 
 
Futher as was estalished by Gasymov M.G. [1]  if 
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then unicually defined functions 22,0),( −= mxp γγ  form of (1.1) exist for which the 

numbers }~{ nS  are calculated by formula (1.3)- (1.4). Further the full solution of this 
problem at m=1 was given in [5], where the authors proved the following  
Theorem 1:  In order to the  given sequence of complex numbers be the set of spectral 

data for the operator )(0

2

xp
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dL +





= , with potential  2
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sufficient simultaneously  satisfing  the conditions 
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exists ( mnδ -Cronekker’s symbol) , is continuous, is not equal to zero in the closed semi-
plane +C = }0Im:{ ≥zz  and is analitical inside open semi-plane }.0Im:{ >=+ zzC  
In the present work the full inverse problem for the operator (1.2) with potential (1.1) is 
solved using methods of [2],[5]. 
Let’s formulate the main result of the work. 
Definition. Constructed by the help of formulae (1.4) sequence 12,

1,1}~{ −∞
==
m
jnnjS , is called as 

a set of spectral data for the operator (1.2) with potential (1.1) 
Thoerem 2.  In order to the given sequence of complex numbers 12,

1,1}~{ −∞
==
m
jnnjS  to be a 

spectral data for the operator (1.2) with potential (1.1) it is necessary and sufficient 
simultaneosly satisfing the following conditions: 
 1) ;}~{ 11 lSn nn ∈∞

=                                                                                       (1.6) 
2) ) Infinite determinant 
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exists ( nE -nxn   dimensional unit matrix) , is continuous, is not equal to zero in the 
closed semiplane +C = }0Im:{ ≥zz  and is analitical inside open semiplane 

}.0Im:{ >=+ zzC  
2. On an inverse poblem of the scattering theory in the semiaxis. 
 On the base of the proof of formulated Theorem 2, as in [5], lies investigation  of the 
equation yyl m2)( λ= . Taking in it 
                   )()(,, tYxyikitx =−== λ                                                     (2.1) 
we get 
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As a result the equation (2.1) is obtained, the potential of which decreases at  ∞→t .  
Lemma1:  The kernel of the operator of transformation (2.2) tuutK ≥),,( , connected 
with ∞+ , with potential (2.3) admits representation 
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where the series 
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converge. 
Proof: 
 As is shown in [2], the equation (2.2) with potential (2.3) has a solution  
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and the numbers )( j
nV α  are defined by following reccurent formulae: 
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at ,12,...,2,1;1,...,2,1,...;3,2 −=−== mjn αα  
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and the sequence (2.4) admits 2m –times term by term differentiation. Then under the 
conditions (2.3) we get   
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Lemma is proved. 

Futher, using the methodology of the works  [1,2] the equality  
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from (2.10) we obtain the Marchenko type equation 
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Thus the following Lemma is proved: 

Lemma2: If the coefficients )(tQγ of the equation (2.2) have a form (2.3), then the 
kernel of the operator of transformation (2.8) satisfyes Marchenko type equation (2.12) 
at each 0≥t , where the transmission function )(~ tF  has a form  (2.11) and the 
numbers njS  are defined by (2.9), from which follows that, )( j

nnnj VS = . 



The coefficients )(tQγ  are reconstructed by the kernel of the transformation operator by 
the help of recurrent formulae (2.5)-(2.6). So, the main equation (2.12) and the form of 
the transformation operator (2.11) make naturally the formulation of the inverse 
problem about reconstruction coefficirnts of the equation (2.1) by numbers njS . In this 
formulation, as in others, in the using of transformatioin operator method, more 
important moment is the proof of uniqueness solvabitity of the main equation (2.12). 

Lemma3. The homogenous equation 
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with potential 2)( +∈QtQγ  has only trivial solution. 
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at st ≥  follows, that 0,0 == gf  and the lemma is proved. 

Lemma 4: For each fixed )0(Im, ≥aa  the homogenous equation 
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has only trivial solution in the space ).(2
+RL  

Proof: 

Replacing  х  by  х+а, where 0Im ≥a , in (1.2) we obtain the equation of same type 
with potential  )()( axQxQa += γγ   satisfing  condition(1.1). Note, that the 
functions ),( jax λωϕ +  are the solutions of the equations 
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 According to (1.4) we get 
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 Consequesly 

 )(aSnj = inae njS .                                                                  (2.16 ) 

       Now, as above, we get the main equation of the form (2.12) with transmission 
function 
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 From this lemma follows 
Theorem3: The coefficients )(tQγ  of the equation (2.1) satisfying (2.2) are determined 
unequvocally by numbers njS . 

III. Proof of Theorem 2. 

Neccesarity:  From the relation (2.9) and form of )(tf nj  we obtain  
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i.e. 1
12 lSn nj

m ∈− . The neccesarity of the condition  (1) is proved.  

To prove neccesarity of the condition (2) firstly we show, that from the trivial 
solvability of the main equation (2.12) at t=0 in the class of functions satisfying to 
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Really, if { } ,12,1,2 −=∈ mjlg jn  is a solution of this system, then the function 
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So, 0)( =ug , therefore, 0=jnnj gS  for all, ,12,1,1 −=≥ mjn  and 
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Therefore to prove the neccesarity of the condition 2) of Theorem 2 it needs to test 
.0)0()0( ≠=∆ D  Really, the system (3.1) may be written in );,1( 12
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As, )0(F  is kernel of the  operator the Fredholm theory is applicable to it. Accordingly 
to this theory trivial solvability of it is equaivalent to the fact, that 
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As )(tF  is kernel operator for  0≥t  and the condition 0))(det()( ≠−=∆ tFEt  
Is satisfied, there exists bounded in  2l  inverse operator 1))(()( −−= tFEtR .  
As  2)()( ltetF ∈ , from  (3.4) we get 



                                  )()()()( tetFtRtk = .                                       (3.5) 

Now, let’s take ∑
∞

=

=
1

,
n

nn gfgf . Then (2.12) gives 

=+=+=+= )(),()()()()(),()()()(),()(),()(),(),( uAtetFtRteuAtetFtRuAteuAtkuAteutK
 

)(),()( uAtetR= ,                                                                               (3.6) 
where )(uA  is defined as 

∞−

=

−
−∞−

= −
==

,12

1,

1,12

1, )1(
)()(

m

nj

un

j

njm

njjn
je

i
S

uauA ω

ω
 

     Now suppose, the conditions of the theorem are satisfied. Define the function 
),( utK  by the equality (3.6) at ut ≤≤0  in according to given above considerations. 
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where “*” denotes  the matrix adjoint to )(tF  relatively bilinear form .,. .Thus, the 
following lemma is proved. 
 Lemma 5:  At any 0≥t the kernel ),( utK  of the transformation operator satisfies the 
main equation 

∫
∞

+++=
t
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The uniquovacalary solvability of the main equation follows from Lemma 3. By 
subsituation it is not difficult to calculate, that the solution of the main equation indeed 
is  
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where the numbers )( j
nV α  are defined from recurrent relations 
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 To prove the main statement that the coefficients )(tQγ  have a form (2.2), at  first we 
result the estimations  
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From other hand, as it was noted, the operator-function 1))(()( −−= tFEtR  exists and is 
bounded in 2l (as )(tF is kernel operator by 0≥t and 0))(det()( ≠−=∆ tFEt ) that 
proves the first inequality of (3.8). 
To prove the estimation (3.9) firstly we get the estimation 
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of mathematic induction method the inequality (3.9) is proved.  In [4] the folloving 
relations are proved ( to make correnpondence with our case, let’s denote  
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 Now it is not difficult to show,  
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 is πi2  periodic function and has bounded (2m-1) order derivatives. It follows 
from this, that the Fourier coefficients of the function ,),(0 Rxix ∈−Π  satisfy 
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mn . Thus the Fourier coefficients nmP ,22 −  of 

the function )()( 022 xqxQ m =−  satisfy (2.2). Similary for the rest of coefficients 

32,0),( −= mxQ γγ  it is established, that the Fourier  coefficients npγ  of the 

function 32,0),()( 22 −== −− mxqxQ m γγγ  satisfy (2.2).It means, that the  Furier 

coefficients  of the function 22,0),( −= mxP γγ  satisfy (1.1). 

Let, finally, { }njS~ -be the set of spectral data for the operator )( 2 EkL m− with constructed 
coefficients )(xPγ .To finish the proof it is enough to show, that { }njS coincides with 

initial set { }njS~ . This fact follows from the equality nj
j

nnnj SVS == )(~ . The theorem is 
proved. 
The author has benefited from discussions with prof. M.G.Casymov and prof. 
I.M.Guseynov. 
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